Tap the blue circles to see an explanation.
| $$ \begin{aligned}3 \cdot \frac{x}{x^2+2}+\frac{2x+1}{x^2-4}-\frac{2}{x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3x}{x^2+2}+\frac{2x+1}{x^2-4}-\frac{2}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5x^3+x^2-8x+2}{x^4-2x^2-8}-\frac{2}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3x^4+x^3-4x^2+2x+16}{x^5-2x^3-8x}\end{aligned} $$ | |
| ① | Multiply $3$ by $ \dfrac{x}{x^2+2} $ to get $ \dfrac{ 3x }{ x^2+2 } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{x}{x^2+2} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{x}{x^2+2} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 1 \cdot \left( x^2+2 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x }{ x^2+2 } \end{aligned} $$ |
| ② | Add $ \dfrac{3x}{x^2+2} $ and $ \dfrac{2x+1}{x^2-4} $ to get $ \dfrac{ \color{purple}{ 5x^3+x^2-8x+2 } }{ x^4-2x^2-8 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $ \dfrac{2}{x} $ from $ \dfrac{5x^3+x^2-8x+2}{x^4-2x^2-8} $ to get $ \dfrac{ \color{purple}{ 3x^4+x^3-4x^2+2x+16 } }{ x^5-2x^3-8x }$. To subtract raitonal expressions, both fractions must have the same denominator. |