Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3u-4v)(3u+3v)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9u^2+9uv-12uv-12v^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9u^2-3uv-12v^2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3u-4v}\right) $ by each term in $ \left( 3u+3v\right) $. $$ \left( \color{blue}{3u-4v}\right) \cdot \left( 3u+3v\right) = 9u^2+9uv-12uv-12v^2 $$ |
| ② | Combine like terms: $$ 9u^2+ \color{blue}{9uv} \color{blue}{-12uv} -12v^2 = 9u^2 \color{blue}{-3uv} -12v^2 $$ |