Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3-\frac{3}{2}x)(9-9x+\frac{9}{4}x^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(3-\frac{3x}{2})(9-9x+\frac{9x^2}{4}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-3x+6}{2}\frac{9x^2-36x+36}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-27x^3+162x^2-324x+216}{8}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{3}{2} $ by $ x $ to get $ \dfrac{ 3x }{ 2 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{2} \cdot x & \xlongequal{\text{Step 1}} \frac{3}{2} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3x }{ 2 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{9}{4} $ by $ x^2 $ to get $ \dfrac{ 9x^2 }{ 4 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{9}{4} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{9}{4} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 9 \cdot x^2 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 9x^2 }{ 4 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{3x}{2} $ from $ 3 $ to get $ \dfrac{ \color{purple}{ -3x+6 } }{ 2 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $9-9x$ and $ \dfrac{9x^2}{4} $ to get $ \dfrac{ \color{purple}{ 9x^2-36x+36 } }{ 4 }$. Step 1: Write $ 9-9x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Multiply $ \dfrac{-3x+6}{2} $ by $ \dfrac{9x^2-36x+36}{4} $ to get $ \dfrac{-27x^3+162x^2-324x+216}{8} $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{-3x+6}{2} \cdot \frac{9x^2-36x+36}{4} & \xlongequal{\text{Step 1}} \frac{ \left( -3x+6 \right) \cdot \left( 9x^2-36x+36 \right) }{ 2 \cdot 4 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ -27x^3+108x^2-108x+54x^2-216x+216 }{ 8 } = \frac{-27x^3+162x^2-324x+216}{8} \end{aligned} $$ |