Tap the blue circles to see an explanation.
| $$ \begin{aligned}(\frac{3}{8}x^2+\frac{1}{4}x-\frac{2}{5})(2x^3-\frac{1}{3}x+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(\frac{3x^2}{8}+\frac{x}{4}-\frac{2}{5})(2x^3-\frac{x}{3}+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(\frac{3x^2+2x}{8}-\frac{2}{5})(\frac{6x^3-x}{3}+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{15x^2+10x-16}{40}\frac{6x^3-x+6}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{90x^5+60x^4-111x^3+80x^2+76x-96}{120}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{3}{8} $ by $ x^2 $ to get $ \dfrac{ 3x^2 }{ 8 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{8} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{3}{8} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x^2 }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x^2 }{ 8 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{1}{4} $ by $ x $ to get $ \dfrac{ x }{ 4 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot x & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ x }{ 4 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{1}{3} $ by $ x $ to get $ \dfrac{ x }{ 3 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ x }{ 3 } \end{aligned} $$ |
| ④ | Add $ \dfrac{3x^2}{8} $ and $ \dfrac{x}{4} $ to get $ \dfrac{ \color{purple}{ 3x^2+2x } }{ 8 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Subtract $ \dfrac{x}{3} $ from $ 2x^3 $ to get $ \dfrac{ \color{purple}{ 6x^3-x } }{ 3 }$. Step 1: Write $ 2x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Subtract $ \dfrac{2}{5} $ from $ \dfrac{3x^2+2x}{8} $ to get $ \dfrac{ \color{purple}{ 15x^2+10x-16 } }{ 40 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Add $ \dfrac{6x^3-x}{3} $ and $ 2 $ to get $ \dfrac{ \color{purple}{ 6x^3-x+6 } }{ 3 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑧ | Multiply $ \dfrac{15x^2+10x-16}{40} $ by $ \dfrac{6x^3-x+6}{3} $ to get $ \dfrac{90x^5+60x^4-111x^3+80x^2+76x-96}{120} $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{15x^2+10x-16}{40} \cdot \frac{6x^3-x+6}{3} & \xlongequal{\text{Step 1}} \frac{ \left( 15x^2+10x-16 \right) \cdot \left( 6x^3-x+6 \right) }{ 40 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 90x^5-15x^3+90x^2+60x^4-10x^2+60x-96x^3+16x-96 }{ 120 } = \frac{90x^5+60x^4-111x^3+80x^2+76x-96}{120} \end{aligned} $$ |