Tap the blue circles to see an explanation.
| $$ \begin{aligned}3^2+2\cdot3-3-2\cdot3^2+3+4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3^2+6-3-2\cdot3^2+3+4 \xlongequal{ } \\[1 em] & \xlongequal{ }9+6-3-2\cdot9+3+4 \xlongequal{ } \\[1 em] & \xlongequal{ }9+6 -\cancel{3}-18+ \cancel{3}+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9+6-3-18+3+4 \xlongequal{ } \\[1 em] & \xlongequal{ }9+6 -\cancel{3}-18+ \cancel{3}+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}1\end{aligned} $$ | |
| ① | $$ 2 \cdot 3 = 6 $$ |
| ② | $$ 2 \cdot 9 = 18 $$ |
| ③ | Combine like terms: $$ \color{blue}{9} + \color{red}{6} \, \color{green}{ -\cancel{3}} \, \color{blue}{-18} + \, \color{red}{ \cancel{3}} \,+ \color{red}{4} = \color{red}{1} $$ |