Tap the blue circles to see an explanation.
| $$ \begin{aligned}3\cdot(-1)+3\cdot3\cdot(-1)^2-3\cdot3\cdot(-1)+3\cdot3^2\cdot(-1)-2\cdot3\cdot(-1)^2+3\cdot(-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-3+9\cdot(-1)^2-(-9)+3\cdot3^2\cdot(-1)-6\cdot(-1)^2+(-3) \xlongequal{ } \\[1 em] & \xlongequal{ }-3+9\cdot1-(-9)+3\cdot9\cdot(-1)-6\cdot1+(-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3+9+9-27-6-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-21\end{aligned} $$ | |
| ① | $$ 3 \cdot -1 = -3 $$$$ 3 \cdot 3 = 9 $$$$ 3 \cdot 3 \cdot -1 = -9 $$$$ 2 \cdot 3 = 6 $$$$ 3 \cdot -1 = -3 $$ |
| ② | $$ 3 \cdot 9 \cdot -1 = -27 $$ |
| ③ | Combine like terms: $$ \color{blue}{-3} + \color{red}{9} + \color{green}{9} \color{orange}{-27} \color{blue}{-6} \color{blue}{-3} = \color{blue}{-21} $$ |