Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2y+1)(y-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2y^2-6y+y-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2y^2-5y-3\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2y+1}\right) $ by each term in $ \left( y-3\right) $. $$ \left( \color{blue}{2y+1}\right) \cdot \left( y-3\right) = 2y^2-6y+y-3 $$ |
| ② | Combine like terms: $$ 2y^2 \color{blue}{-6y} + \color{blue}{y} -3 = 2y^2 \color{blue}{-5y} -3 $$ |