Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x+5)(x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2-6x+5x-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^2-x-15\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x+5}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{2x+5}\right) \cdot \left( x-3\right) = 2x^2-6x+5x-15 $$ |
| ② | Combine like terms: $$ 2x^2 \color{blue}{-6x} + \color{blue}{5x} -15 = 2x^2 \color{blue}{-x} -15 $$ |