Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x+10)(-2x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-4x^2+6x-20x+30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4x^2-14x+30\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x+10}\right) $ by each term in $ \left( -2x+3\right) $. $$ \left( \color{blue}{2x+10}\right) \cdot \left( -2x+3\right) = -4x^2+6x-20x+30 $$ |
| ② | Combine like terms: $$ -4x^2+ \color{blue}{6x} \color{blue}{-20x} +30 = -4x^2 \color{blue}{-14x} +30 $$ |