Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x+\frac{1}{x})(2x-\frac{1}{x})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x^2+1}{x}\frac{2x^2-1}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4x^4-1}{x^2}\end{aligned} $$ | |
| ① | Add $2x$ and $ \dfrac{1}{x} $ to get $ \dfrac{ \color{purple}{ 2x^2+1 } }{ x }$. Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $ \dfrac{1}{x} $ from $ 2x $ to get $ \dfrac{ \color{purple}{ 2x^2-1 } }{ x }$. Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Multiply $ \dfrac{2x^2+1}{x} $ by $ \dfrac{2x^2-1}{x} $ to get $ \dfrac{4x^4-1}{x^2} $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x^2+1}{x} \cdot \frac{2x^2-1}{x} & \xlongequal{\text{Step 1}} \frac{ \left( 2x^2+1 \right) \cdot \left( 2x^2-1 \right) }{ x \cdot x } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 4x^4 -\cancel{2x^2}+ \cancel{2x^2}-1 }{ x^2 } = \frac{4x^4-1}{x^2} \end{aligned} $$ |