Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x+1)(-2x^2-x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-4x^3-2x^2-2x-2x^2-x-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4x^3-4x^2-3x-1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x+1}\right) $ by each term in $ \left( -2x^2-x-1\right) $. $$ \left( \color{blue}{2x+1}\right) \cdot \left( -2x^2-x-1\right) = -4x^3-2x^2-2x-2x^2-x-1 $$ |
| ② | Combine like terms: $$ -4x^3 \color{blue}{-2x^2} \color{red}{-2x} \color{blue}{-2x^2} \color{red}{-x} -1 = -4x^3 \color{blue}{-4x^2} \color{red}{-3x} -1 $$ |