| $$ \begin{aligned}(2xi^3-3y)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4i^6x^2-12i^3xy+9y^2\end{aligned} $$ | |
| ① | Find $ \left(2i^3x-3y\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2i^3x } $ and $ B = \color{red}{ 3y }$. $$ \begin{aligned}\left(2i^3x-3y\right)^2 = \color{blue}{\left( 2i^3x \right)^2} -2 \cdot 2i^3x \cdot 3y + \color{red}{\left( 3y \right)^2} = 4i^6x^2-12i^3xy+9y^2\end{aligned} $$ |