Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2xh+h^2)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4h^2x^2+4h^3x+h^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}h^4+4h^3x+4h^2x^2\end{aligned} $$ | |
| ① | Find $ \left(2hx+h^2\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2hx } $ and $ B = \color{red}{ h^2 }$. $$ \begin{aligned}\left(2hx+h^2\right)^2 = \color{blue}{\left( 2hx \right)^2} +2 \cdot 2hx \cdot h^2 + \color{red}{\left( h^2 \right)^2} = 4h^2x^2+4h^3x+h^4\end{aligned} $$ |
| ② | Combine like terms: $$ h^4+4h^3x+4h^2x^2 = h^4+4h^3x+4h^2x^2 $$ |