Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x-5)^2-(x-3)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2-20x+25-(x^3-9x^2+27x-27) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2-20x+25-x^3+9x^2-27x+27 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-x^3+13x^2-47x+52\end{aligned} $$ | |
| ① | Find $ \left(2x-5\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2x } $ and $ B = \color{red}{ 5 }$. $$ \begin{aligned}\left(2x-5\right)^2 = \color{blue}{\left( 2x \right)^2} -2 \cdot 2x \cdot 5 + \color{red}{5^2} = 4x^2-20x+25\end{aligned} $$Find $ \left(x-3\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = x $ and $ B = 3 $. $$ \left(x-3\right)^3 = x^3-3 \cdot x^2 \cdot 3 + 3 \cdot x \cdot 3^2-3^3 = x^3-9x^2+27x-27 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^3-9x^2+27x-27 \right) = -x^3+9x^2-27x+27 $$ |
| ③ | Combine like terms: $$ \color{blue}{4x^2} \color{red}{-20x} + \color{green}{25} -x^3+ \color{blue}{9x^2} \color{red}{-27x} + \color{green}{27} = -x^3+ \color{blue}{13x^2} \color{red}{-47x} + \color{green}{52} $$ |