Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x-5)(4x^2-5x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x^3-10x^2+10x-20x^2+25x-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^3-30x^2+35x-25\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x-5}\right) $ by each term in $ \left( 4x^2-5x+5\right) $. $$ \left( \color{blue}{2x-5}\right) \cdot \left( 4x^2-5x+5\right) = 8x^3-10x^2+10x-20x^2+25x-25 $$ |
| ② | Combine like terms: $$ 8x^3 \color{blue}{-10x^2} + \color{red}{10x} \color{blue}{-20x^2} + \color{red}{25x} -25 = 8x^3 \color{blue}{-30x^2} + \color{red}{35x} -25 $$ |