Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x-5)(3x\cdot2-5x-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x-5)(6x-5x-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(2x-5)(x-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x^2-8x-5x+20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2x^2-13x+20\end{aligned} $$ | |
| ① | $$ 3 x \cdot 2 = 6 x $$ |
| ② | Combine like terms: $$ \color{blue}{6x} \color{blue}{-5x} -4 = \color{blue}{x} -4 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{2x-5}\right) $ by each term in $ \left( x-4\right) $. $$ \left( \color{blue}{2x-5}\right) \cdot \left( x-4\right) = 2x^2-8x-5x+20 $$ |
| ④ | Combine like terms: $$ 2x^2 \color{blue}{-8x} \color{blue}{-5x} +20 = 2x^2 \color{blue}{-13x} +20 $$ |