Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x-4)(x^3-3x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^4-6x^2+2x-4x^3+12x-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^4-4x^3-6x^2+14x-4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x-4}\right) $ by each term in $ \left( x^3-3x+1\right) $. $$ \left( \color{blue}{2x-4}\right) \cdot \left( x^3-3x+1\right) = 2x^4-6x^2+2x-4x^3+12x-4 $$ |
| ② | Combine like terms: $$ 2x^4-6x^2+ \color{blue}{2x} -4x^3+ \color{blue}{12x} -4 = 2x^4-4x^3-6x^2+ \color{blue}{14x} -4 $$ |