Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x-1)(2x+1)(3x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(4x^2+2x-2x-1)(3x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(4x^2-1)(3x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}12x^3-4x^2-3x+1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x-1}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{2x-1}\right) \cdot \left( 2x+1\right) = 4x^2+ \cancel{2x} -\cancel{2x}-1 $$ |
| ② | Combine like terms: $$ 4x^2+ \, \color{blue}{ \cancel{2x}} \, \, \color{blue}{ -\cancel{2x}} \,-1 = 4x^2-1 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{4x^2-1}\right) $ by each term in $ \left( 3x-1\right) $. $$ \left( \color{blue}{4x^2-1}\right) \cdot \left( 3x-1\right) = 12x^3-4x^2-3x+1 $$ |