Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x-1)(2x^2-x+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^3-2x^2+14x-2x^2+x-7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^3-4x^2+15x-7\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x-1}\right) $ by each term in $ \left( 2x^2-x+7\right) $. $$ \left( \color{blue}{2x-1}\right) \cdot \left( 2x^2-x+7\right) = 4x^3-2x^2+14x-2x^2+x-7 $$ |
| ② | Combine like terms: $$ 4x^3 \color{blue}{-2x^2} + \color{red}{14x} \color{blue}{-2x^2} + \color{red}{x} -7 = 4x^3 \color{blue}{-4x^2} + \color{red}{15x} -7 $$ |