Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x^2+x-15)(x^2-x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^4-x^3-20x^2+13x+30\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x^2+x-15}\right) $ by each term in $ \left( x^2-x-2\right) $. $$ \left( \color{blue}{2x^2+x-15}\right) \cdot \left( x^2-x-2\right) = 2x^4-2x^3-4x^2+x^3-x^2-2x-15x^2+15x+30 $$ |
| ② | Combine like terms: $$ 2x^4 \color{blue}{-2x^3} \color{red}{-4x^2} + \color{blue}{x^3} \color{green}{-x^2} \color{orange}{-2x} \color{green}{-15x^2} + \color{orange}{15x} +30 = \\ = 2x^4 \color{blue}{-x^3} \color{green}{-20x^2} + \color{orange}{13x} +30 $$ |