Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{\frac{2x^2+x-1}{x}}{2x-1}}{2x+1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{x+1}{x}}{2x+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x+1}{2x^2+x}\end{aligned} $$ | |
| ① | Divide $ \dfrac{2x^2+x-1}{x} $ by $ 2x-1 $ to get $ \dfrac{ x+1 }{ x } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2x^2+x-1}{x} }{2x-1} & \xlongequal{\text{Step 1}} \frac{2x^2+x-1}{x} \cdot \frac{\color{blue}{1}}{\color{blue}{2x-1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( x+1 \right) \cdot \color{blue}{ \left( 2x-1 \right) } }{ x } \cdot \frac{ 1 }{ 1 \cdot \color{blue}{ \left( 2x-1 \right) } } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x+1 }{ x } \cdot \frac{ 1 }{ 1 } \xlongequal{\text{Step 4}} \frac{ \left( x+1 \right) \cdot 1 }{ x \cdot 1 } \xlongequal{\text{Step 5}} \frac{ x+1 }{ x } \end{aligned} $$ |
| ② | Divide $ \dfrac{x+1}{x} $ by $ 2x+1 $ to get $ \dfrac{ x+1 }{ 2x^2+x } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x+1}{x} }{2x+1} & \xlongequal{\text{Step 1}} \frac{x+1}{x} \cdot \frac{\color{blue}{1}}{\color{blue}{2x+1}} \xlongequal{\text{Step 2}} \frac{ \left( x+1 \right) \cdot 1 }{ x \cdot \left( 2x+1 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x+1 }{ 2x^2+x } \end{aligned} $$ |