Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x^2+8-6x^3-(7x^2-6x^3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2+8-6x^3-7x^2+6x^3 \xlongequal{ } \\[1 em] & \xlongequal{ }2x^2+8 -\cancel{6x^3}-7x^2+ \cancel{6x^3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-5x^2+8\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 7x^2-6x^3 \right) = -7x^2+6x^3 $$ |
| ② | Combine like terms: $$ \color{blue}{2x^2} +8 \, \color{red}{ -\cancel{6x^3}} \, \color{blue}{-7x^2} + \, \color{red}{ \cancel{6x^3}} \, = \color{blue}{-5x^2} +8 $$ |