Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x^2+3x+6)(2x^2+x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^4+8x^3+11x^2-12\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x^2+3x+6}\right) $ by each term in $ \left( 2x^2+x-2\right) $. $$ \left( \color{blue}{2x^2+3x+6}\right) \cdot \left( 2x^2+x-2\right) = \\ = 4x^4+2x^3-4x^2+6x^3+3x^2 -\cancel{6x}+12x^2+ \cancel{6x}-12 $$ |
| ② | Combine like terms: $$ 4x^4+ \color{blue}{2x^3} \color{red}{-4x^2} + \color{blue}{6x^3} + \color{green}{3x^2} \, \color{orange}{ -\cancel{6x}} \,+ \color{green}{12x^2} + \, \color{orange}{ \cancel{6x}} \,-12 = 4x^4+ \color{blue}{8x^3} + \color{green}{11x^2} -12 $$ |