Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x^2+2x)(2x+2)-4x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^3+4x^2+4x^2+4x-4x^2 \xlongequal{ } \\[1 em] & \xlongequal{ }4x^3+ \cancel{4x^2}+ \cancel{4x^2}+4x -\cancel{4x^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^3+4x^2+4x\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x^2+2x}\right) $ by each term in $ \left( 2x+2\right) $. $$ \left( \color{blue}{2x^2+2x}\right) \cdot \left( 2x+2\right) = 4x^3+4x^2+4x^2+4x $$ |
| ② | Combine like terms: $$ 4x^3+ \, \color{blue}{ \cancel{4x^2}} \,+ \, \color{green}{ \cancel{4x^2}} \,+4x \, \color{green}{ -\cancel{4x^2}} \, = 4x^3+ \color{green}{4x^2} +4x $$ |