Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x^2-3x+4-(x^2+2x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2-3x+4-x^2-2x+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-5x+5\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^2+2x-1 \right) = -x^2-2x+1 $$ |
| ② | Combine like terms: $$ \color{blue}{2x^2} \color{red}{-3x} + \color{green}{4} \color{blue}{-x^2} \color{red}{-2x} + \color{green}{1} = \color{blue}{x^2} \color{red}{-5x} + \color{green}{5} $$ |