Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2a+1)(2b+1)\frac{2c+1}{(a+1)(b+1)(c+1)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(4ab+2a+2b+1)\frac{2c+1}{(a+1)(b+1)(c+1)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(4ab+2a+2b+1)\frac{2c+1}{(1ab+a+b+1)(c+1)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(4ab+2a+2b+1)\frac{2c+1}{abc+ab+ac+bc+a+b+c+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{8abc+4ab+4ac+4bc+2a+2b+2c+1}{abc+ab+ac+bc+a+b+c+1}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2a+1}\right) $ by each term in $ \left( 2b+1\right) $. $$ \left( \color{blue}{2a+1}\right) \cdot \left( 2b+1\right) = 4ab+2a+2b+1 $$ |
| ② | Multiply each term of $ \left( \color{blue}{a+1}\right) $ by each term in $ \left( b+1\right) $. $$ \left( \color{blue}{a+1}\right) \cdot \left( b+1\right) = ab+a+b+1 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{ab+a+b+1}\right) $ by each term in $ \left( c+1\right) $. $$ \left( \color{blue}{ab+a+b+1}\right) \cdot \left( c+1\right) = abc+ab+ac+a+bc+b+c+1 $$ |
| ④ | Combine like terms: $$ abc+ab+ac+a+bc+b+c+1 = abc+ab+ac+bc+a+b+c+1 $$ |
| ⑤ | Multiply $4ab+2a+2b+1$ by $ \dfrac{2c+1}{abc+ab+ac+bc+a+b+c+1} $ to get $ \dfrac{8abc+4ab+4ac+4bc+2a+2b+2c+1}{abc+ab+ac+bc+a+b+c+1} $. Step 1: Write $ 4ab+2a+2b+1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4ab+2a+2b+1 \cdot \frac{2c+1}{abc+ab+ac+bc+a+b+c+1} & \xlongequal{\text{Step 1}} \frac{4ab+2a+2b+1}{\color{red}{1}} \cdot \frac{2c+1}{abc+ab+ac+bc+a+b+c+1} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 4ab+2a+2b+1 \right) \cdot \left( 2c+1 \right) }{ 1 \cdot \left( abc+ab+ac+bc+a+b+c+1 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8abc+4ab+4ac+2a+4bc+2b+2c+1 }{ abc+ab+ac+bc+a+b+c+1 } = \frac{8abc+4ab+4ac+4bc+2a+2b+2c+1}{abc+ab+ac+bc+a+b+c+1} \end{aligned} $$ |