Tap the blue circles to see an explanation.
| $$ \begin{aligned}(28-2x)\cdot(32-2x)x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(896-56x-64x+4x^2)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(4x^2-120x+896)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^3-120x^2+896x\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{28-2x}\right) $ by each term in $ \left( 32-2x\right) $. $$ \left( \color{blue}{28-2x}\right) \cdot \left( 32-2x\right) = 896-56x-64x+4x^2 $$ |
| ② | Combine like terms: $$ 896 \color{blue}{-56x} \color{blue}{-64x} +4x^2 = 4x^2 \color{blue}{-120x} +896 $$ |
| ③ | $$ \left( \color{blue}{4x^2-120x+896}\right) \cdot x = 4x^3-120x^2+896x $$ |