Tap the blue circles to see an explanation.
| $$ \begin{aligned}(20-13w^2)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}400-520w^2+169w^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}169w^4-520w^2+400\end{aligned} $$ | |
| ① | Find $ \left(20-13w^2\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 20 } $ and $ B = \color{red}{ 13w^2 }$. $$ \begin{aligned}\left(20-13w^2\right)^2 = \color{blue}{20^2} -2 \cdot 20 \cdot 13w^2 + \color{red}{\left( 13w^2 \right)^2} = 400-520w^2+169w^4\end{aligned} $$ |
| ② | Combine like terms: $$ 169w^4-520w^2+400 = 169w^4-520w^2+400 $$ |