Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{20}{x+1}}{\frac{1}{4}-\frac{7}{x+1}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{20}{x+1}}{\frac{x-27}{4x+4}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{80}{x-27}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{7}{x+1} $ from $ \dfrac{1}{4} $ to get $ \dfrac{ \color{purple}{ x-27 } }{ 4x+4 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $ \dfrac{20}{x+1} $ by $ \dfrac{x-27}{4x+4} $ to get $ \dfrac{ 80 }{ x-27 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{20}{x+1} }{ \frac{\color{blue}{x-27}}{\color{blue}{4x+4}} } & \xlongequal{\text{Step 1}} \frac{20}{x+1} \cdot \frac{\color{blue}{4x+4}}{\color{blue}{x-27}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 20 }{ 1 \cdot \color{red}{ \left( x+1 \right) } } \cdot \frac{ 4 \cdot \color{red}{ \left( x+1 \right) } }{ x-27 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 20 }{ 1 } \cdot \frac{ 4 }{ x-27 } \xlongequal{\text{Step 4}} \frac{ 20 \cdot 4 }{ 1 \cdot \left( x-27 \right) } \xlongequal{\text{Step 5}} \frac{ 80 }{ x-27 } \end{aligned} $$ |