Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2-5y)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8-60y+150y^2-125y^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-125y^3+150y^2-60y+8\end{aligned} $$ | |
| ① | Find $ \left(2-5y\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = 2 $ and $ B = 5y $. $$ \left(2-5y\right)^3 = 2^3-3 \cdot 2^2 \cdot 5y + 3 \cdot 2 \cdot \left( 5y \right)^2-\left( 5y \right)^3 = 8-60y+150y^2-125y^3 $$ |
| ② | Combine like terms: $$ -125y^3+150y^2-60y+8 = -125y^3+150y^2-60y+8 $$ |