Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2-sqrt\cdot8-h)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}64q^2r^2s^2t^2+16hqrst-32qrst+h^2-4h+4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2-8qrst-h}\right) $ by each term in $ \left( 2-8qrst-h\right) $. $$ \left( \color{blue}{2-8qrst-h}\right) \cdot \left( 2-8qrst-h\right) = \\ = 4-16qrst-2h-16qrst+64q^2r^2s^2t^2+8hqrst-2h+8hqrst+h^2 $$ |
| ② | Combine like terms: $$ 4 \color{blue}{-16qrst} \color{red}{-2h} \color{blue}{-16qrst} +64q^2r^2s^2t^2+ \color{green}{8hqrst} \color{red}{-2h} + \color{green}{8hqrst} +h^2 = \\ = 64q^2r^2s^2t^2+ \color{green}{16hqrst} \color{blue}{-32qrst} +h^2 \color{red}{-4h} +4 $$ |