Tap the blue circles to see an explanation.
| $$ \begin{aligned}(\frac{2}{5}m^2+\frac{1}{3}mn-\frac{1}{2}n^2)(\frac{3}{2}m^2+2n^2-mn)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(\frac{2m^2}{5}+\frac{m}{3}n-\frac{n^2}{2})(\frac{3m^2}{2}+2n^2-mn) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}(\frac{2m^2}{5}+\frac{mn}{3}-\frac{n^2}{2})(\frac{3m^2+4n^2}{2}-mn) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} } }}}(\frac{6m^2+5mn}{15}-\frac{n^2}{2})\frac{3m^2-2mn+4n^2}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} \htmlClass{explanationCircle explanationCircle13}{\textcircled {13}} } }}}\frac{12m^2+10mn-15n^2}{30}\frac{3m^2-2mn+4n^2}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle14}{\textcircled {14}} } }}}\frac{36m^4+6m^3n-17m^2n^2+70mn^3-60n^4}{60}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{2}{5} $ by $ m^2 $ to get $ \dfrac{ 2m^2 }{ 5 } $. Step 1: Write $ m^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{5} \cdot m^2 & \xlongequal{\text{Step 1}} \frac{2}{5} \cdot \frac{m^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot m^2 }{ 5 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2m^2 }{ 5 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{1}{3} $ by $ m $ to get $ \dfrac{ m }{ 3 } $. Step 1: Write $ m $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot m & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{m}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot m }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ m }{ 3 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{1}{2} $ by $ n^2 $ to get $ \dfrac{ n^2 }{ 2 } $. Step 1: Write $ n^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot n^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{n^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot n^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ n^2 }{ 2 } \end{aligned} $$ |
| ④ | Multiply $ \dfrac{3}{2} $ by $ m^2 $ to get $ \dfrac{ 3m^2 }{ 2 } $. Step 1: Write $ m^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{2} \cdot m^2 & \xlongequal{\text{Step 1}} \frac{3}{2} \cdot \frac{m^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot m^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3m^2 }{ 2 } \end{aligned} $$ |
| ⑤ | Multiply $ \dfrac{2}{5} $ by $ m^2 $ to get $ \dfrac{ 2m^2 }{ 5 } $. Step 1: Write $ m^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{5} \cdot m^2 & \xlongequal{\text{Step 1}} \frac{2}{5} \cdot \frac{m^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot m^2 }{ 5 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2m^2 }{ 5 } \end{aligned} $$ |
| ⑥ | Multiply $ \dfrac{m}{3} $ by $ n $ to get $ \dfrac{ mn }{ 3 } $. Step 1: Write $ n $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{m}{3} \cdot n & \xlongequal{\text{Step 1}} \frac{m}{3} \cdot \frac{n}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ m \cdot n }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ mn }{ 3 } \end{aligned} $$ |
| ⑦ | Multiply $ \dfrac{1}{2} $ by $ n^2 $ to get $ \dfrac{ n^2 }{ 2 } $. Step 1: Write $ n^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot n^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{n^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot n^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ n^2 }{ 2 } \end{aligned} $$ |
| ⑧ | Add $ \dfrac{3m^2}{2} $ and $ 2n^2 $ to get $ \dfrac{ \color{purple}{ 3m^2+4n^2 } }{ 2 }$. Step 1: Write $ 2n^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑨ | Add $ \dfrac{2m^2}{5} $ and $ \dfrac{mn}{3} $ to get $ \dfrac{ \color{purple}{ 6m^2+5mn } }{ 15 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑩ | Multiply $ \dfrac{1}{2} $ by $ n^2 $ to get $ \dfrac{ n^2 }{ 2 } $. Step 1: Write $ n^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot n^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{n^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot n^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ n^2 }{ 2 } \end{aligned} $$ |
| ⑪ | Subtract $mn$ from $ \dfrac{3m^2+4n^2}{2} $ to get $ \dfrac{ \color{purple}{ 3m^2-2mn+4n^2 } }{ 2 }$. Step 1: Write $ mn $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑫ | Subtract $ \dfrac{n^2}{2} $ from $ \dfrac{6m^2+5mn}{15} $ to get $ \dfrac{ \color{purple}{ 12m^2+10mn-15n^2 } }{ 30 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑬ | Subtract $mn$ from $ \dfrac{3m^2+4n^2}{2} $ to get $ \dfrac{ \color{purple}{ 3m^2-2mn+4n^2 } }{ 2 }$. Step 1: Write $ mn $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑭ | Multiply $ \dfrac{12m^2+10mn-15n^2}{30} $ by $ \dfrac{3m^2-2mn+4n^2}{2} $ to get $ \dfrac{36m^4+6m^3n-17m^2n^2+70mn^3-60n^4}{60} $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{12m^2+10mn-15n^2}{30} \cdot \frac{3m^2-2mn+4n^2}{2} & \xlongequal{\text{Step 1}} \frac{ \left( 12m^2+10mn-15n^2 \right) \cdot \left( 3m^2-2mn+4n^2 \right) }{ 30 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 36m^4-24m^3n+48m^2n^2+30m^3n-20m^2n^2+40mn^3-45m^2n^2+30mn^3-60n^4 }{ 60 } = \frac{36m^4+6m^3n-17m^2n^2+70mn^3-60n^4}{60} \end{aligned} $$ |