Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{3}(x-1)-\frac{1}{6}(2x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x-2}{3}-\frac{2x+3}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x-7}{6}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{2}{3} $ by $ x-1 $ to get $ \dfrac{ 2x-2 }{ 3 } $. Step 1: Write $ x-1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot x-1 & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{x-1}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot \left( x-1 \right) }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x-2 }{ 3 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{1}{6} $ by $ 2x+3 $ to get $ \dfrac{ 2x+3 }{ 6 } $. Step 1: Write $ 2x+3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{6} \cdot 2x+3 & \xlongequal{\text{Step 1}} \frac{1}{6} \cdot \frac{2x+3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( 2x+3 \right) }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x+3 }{ 6 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{2x+3}{6} $ from $ \dfrac{2x-2}{3} $ to get $ \dfrac{ \color{purple}{ 2x-7 } }{ 6 }$. To subtract raitonal expressions, both fractions must have the same denominator. |