Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{3}(x+3)-\frac{3}{5}(x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x+6}{3}-\frac{3x+12}{5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x-6}{15}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{2}{3} $ by $ x+3 $ to get $ \dfrac{ 2x+6 }{ 3 } $. Step 1: Write $ x+3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot x+3 & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{x+3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot \left( x+3 \right) }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x+6 }{ 3 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{3}{5} $ by $ x+4 $ to get $ \dfrac{ 3x+12 }{ 5 } $. Step 1: Write $ x+4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{5} \cdot x+4 & \xlongequal{\text{Step 1}} \frac{3}{5} \cdot \frac{x+4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot \left( x+4 \right) }{ 5 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x+12 }{ 5 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{3x+12}{5} $ from $ \dfrac{2x+6}{3} $ to get $ \dfrac{ \color{purple}{ x-6 } }{ 15 }$. To subtract raitonal expressions, both fractions must have the same denominator. |