Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2)(2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2+x+4x+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^2+5x+2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( 2x+1\right) = 2x^2+x+4x+2 $$ |
| ② | Combine like terms: $$ 2x^2+ \color{blue}{x} + \color{blue}{4x} +2 = 2x^2+ \color{blue}{5x} +2 $$ |