Tap the blue circles to see an explanation.
| $$ \begin{aligned}(11x-2)(3x-4)(x^2+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(33x^2-44x-6x+8)(x^2+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(33x^2-50x+8)(x^2+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}33x^4+165x^2-50x^3-250x+8x^2+40 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}33x^4-50x^3+173x^2-250x+40\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{11x-2}\right) $ by each term in $ \left( 3x-4\right) $. $$ \left( \color{blue}{11x-2}\right) \cdot \left( 3x-4\right) = 33x^2-44x-6x+8 $$ |
| ② | Combine like terms: $$ 33x^2 \color{blue}{-44x} \color{blue}{-6x} +8 = 33x^2 \color{blue}{-50x} +8 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{33x^2-50x+8}\right) $ by each term in $ \left( x^2+5\right) $. $$ \left( \color{blue}{33x^2-50x+8}\right) \cdot \left( x^2+5\right) = 33x^4+165x^2-50x^3-250x+8x^2+40 $$ |
| ④ | Combine like terms: $$ 33x^4+ \color{blue}{165x^2} -50x^3-250x+ \color{blue}{8x^2} +40 = 33x^4-50x^3+ \color{blue}{173x^2} -250x+40 $$ |