Tap the blue circles to see an explanation.
| $$ \begin{aligned}(1.334-1.8h)^3& \xlongequal{ }(1.334-h)^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1-3h+3h^2-h^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-h^3+3h^2-3h+1\end{aligned} $$ | |
| ① | Find $ \left(1-h\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = 1 $ and $ B = h $. $$ \left(1-h\right)^3 = 1^3-3 \cdot 1^2 \cdot h + 3 \cdot 1 \cdot h^2-h^3 = 1-3h+3h^2-h^3 $$ |
| ② | Combine like terms: $$ -h^3+3h^2-3h+1 = -h^3+3h^2-3h+1 $$ |