Tap the blue circles to see an explanation.
| $$ \begin{aligned}(1-a)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1-3a+3a^2-a^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-a^3+3a^2-3a+1\end{aligned} $$ | |
| ① | Find $ \left(1-a\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = 1 $ and $ B = a $. $$ \left(1-a\right)^3 = 1^3-3 \cdot 1^2 \cdot a + 3 \cdot 1 \cdot a^2-a^3 = 1-3a+3a^2-a^3 $$ |
| ② | Combine like terms: $$ -a^3+3a^2-3a+1 = -a^3+3a^2-3a+1 $$ |