Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1-a}{a}-\frac{(1-a)^2}{2a^2}+2\frac{(1-a)^3}{6a^3}-6\frac{(1-a)^4}{24a^4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{1-a}{a}-\frac{1-2a+a^2}{2a^2}+2\frac{1-3a+3a^2-a^3}{6a^3}-6\frac{a^4-4a^3+6a^2-4a+1}{24a^4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{-3a^3+4a^2-a}{2a^3}+\frac{-2a^3+6a^2-6a+2}{6a^3}-\frac{6a^4-24a^3+36a^2-24a+6}{24a^4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} } }}}\frac{-22a^6+36a^5-18a^4+4a^3}{12a^6}-\frac{6a^4-24a^3+36a^2-24a+6}{24a^4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} } }}}\frac{-600a^{10}+1152a^9-864a^8+384a^7-72a^6}{288a^{10}}\end{aligned} $$ | |
| ① | Find $ \left(1-a\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 1 } $ and $ B = \color{red}{ a }$. $$ \begin{aligned}\left(1-a\right)^2 = \color{blue}{1^2} -2 \cdot 1 \cdot a + \color{red}{a^2} = 1-2a+a^2\end{aligned} $$ |
| ② | Find $ \left(1-a\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = 1 $ and $ B = a $. $$ \left(1-a\right)^3 = 1^3-3 \cdot 1^2 \cdot a + 3 \cdot 1 \cdot a^2-a^3 = 1-3a+3a^2-a^3 $$ |
| ③ | $$ (1-a)^4 = (1-a)^2 \cdot (1-a)^2 $$ |
| ④ | Find $ \left(1-a\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 1 } $ and $ B = \color{red}{ a }$. $$ \begin{aligned}\left(1-a\right)^2 = \color{blue}{1^2} -2 \cdot 1 \cdot a + \color{red}{a^2} = 1-2a+a^2\end{aligned} $$ |
| ⑤ | Multiply each term of $ \left( \color{blue}{1-2a+a^2}\right) $ by each term in $ \left( 1-2a+a^2\right) $. $$ \left( \color{blue}{1-2a+a^2}\right) \cdot \left( 1-2a+a^2\right) = 1-2a+a^2-2a+4a^2-2a^3+a^2-2a^3+a^4 $$ |
| ⑥ | Combine like terms: $$ 1 \color{blue}{-2a} + \color{red}{a^2} \color{blue}{-2a} + \color{green}{4a^2} \color{orange}{-2a^3} + \color{green}{a^2} \color{orange}{-2a^3} +a^4 = a^4 \color{orange}{-4a^3} + \color{green}{6a^2} \color{blue}{-4a} +1 $$ |
| ⑦ | Subtract $ \dfrac{1-2a+a^2}{2a^2} $ from $ \dfrac{1-a}{a} $ to get $ \dfrac{ \color{purple}{ -3a^3+4a^2-a } }{ 2a^3 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑧ | Multiply $2$ by $ \dfrac{1-3a+3a^2-a^3}{6a^3} $ to get $ \dfrac{-2a^3+6a^2-6a+2}{6a^3} $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{1-3a+3a^2-a^3}{6a^3} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{1-3a+3a^2-a^3}{6a^3} \xlongequal{\text{Step 2}} \frac{ 2 \cdot \left( 1-3a+3a^2-a^3 \right) }{ 1 \cdot 6a^3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2-6a+6a^2-2a^3 }{ 6a^3 } = \frac{-2a^3+6a^2-6a+2}{6a^3} \end{aligned} $$ |
| ⑨ | Multiply $6$ by $ \dfrac{a^4-4a^3+6a^2-4a+1}{24a^4} $ to get $ \dfrac{ 6a^4-24a^3+36a^2-24a+6 }{ 24a^4 } $. Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 6 \cdot \frac{a^4-4a^3+6a^2-4a+1}{24a^4} & \xlongequal{\text{Step 1}} \frac{6}{\color{red}{1}} \cdot \frac{a^4-4a^3+6a^2-4a+1}{24a^4} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 6 \cdot \left( a^4-4a^3+6a^2-4a+1 \right) }{ 1 \cdot 24a^4 } \xlongequal{\text{Step 3}} \frac{ 6a^4-24a^3+36a^2-24a+6 }{ 24a^4 } \end{aligned} $$ |
| ⑩ | Add $ \dfrac{-3a^3+4a^2-a}{2a^3} $ and $ \dfrac{-2a^3+6a^2-6a+2}{6a^3} $ to get $ \dfrac{ \color{purple}{ -22a^6+36a^5-18a^4+4a^3 } }{ 12a^6 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑪ | Multiply $6$ by $ \dfrac{a^4-4a^3+6a^2-4a+1}{24a^4} $ to get $ \dfrac{ 6a^4-24a^3+36a^2-24a+6 }{ 24a^4 } $. Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 6 \cdot \frac{a^4-4a^3+6a^2-4a+1}{24a^4} & \xlongequal{\text{Step 1}} \frac{6}{\color{red}{1}} \cdot \frac{a^4-4a^3+6a^2-4a+1}{24a^4} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 6 \cdot \left( a^4-4a^3+6a^2-4a+1 \right) }{ 1 \cdot 24a^4 } \xlongequal{\text{Step 3}} \frac{ 6a^4-24a^3+36a^2-24a+6 }{ 24a^4 } \end{aligned} $$ |
| ⑫ | Subtract $ \dfrac{6a^4-24a^3+36a^2-24a+6}{24a^4} $ from $ \dfrac{-22a^6+36a^5-18a^4+4a^3}{12a^6} $ to get $ \dfrac{ \color{purple}{ -600a^{10}+1152a^9-864a^8+384a^7-72a^6 } }{ 288a^{10} }$. To subtract raitonal expressions, both fractions must have the same denominator. |