Tap the blue circles to see an explanation.
| $$ \begin{aligned}(\frac{1}{3}ax-\frac{1}{2}x^2+\frac{3}{2}a^2)(\frac{3}{2}x^2-ax+\frac{2}{3}a^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(\frac{a}{3}x-\frac{x^2}{2}+\frac{3a^2}{2})(\frac{3x^2}{2}-ax+\frac{2a^2}{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}(\frac{ax}{3}-\frac{x^2}{2}+\frac{3a^2}{2})(\frac{-2ax+3x^2}{2}+\frac{2a^2}{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} \htmlClass{explanationCircle explanationCircle13}{\textcircled {13}} } }}}(\frac{2ax-3x^2}{6}+\frac{3a^2}{2})\frac{4a^2-6ax+9x^2}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle14}{\textcircled {14}} \htmlClass{explanationCircle explanationCircle15}{\textcircled {15}} } }}}\frac{9a^2+2ax-3x^2}{6}\frac{4a^2-6ax+9x^2}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle16}{\textcircled {16}} } }}}\frac{36a^4-46a^3x+57a^2x^2+36ax^3-27x^4}{36}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{3} $ by $ a $ to get $ \dfrac{ a }{ 3 } $. Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot a & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot a }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ a }{ 3 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{1}{2} $ by $ x^2 $ to get $ \dfrac{ x^2 }{ 2 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 }{ 2 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{3}{2} $ by $ a^2 $ to get $ \dfrac{ 3a^2 }{ 2 } $. Step 1: Write $ a^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{2} \cdot a^2 & \xlongequal{\text{Step 1}} \frac{3}{2} \cdot \frac{a^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot a^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3a^2 }{ 2 } \end{aligned} $$ |
| ④ | Multiply $ \dfrac{3}{2} $ by $ x^2 $ to get $ \dfrac{ 3x^2 }{ 2 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{2} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{3}{2} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x^2 }{ 2 } \end{aligned} $$ |
| ⑤ | Multiply $ \dfrac{2}{3} $ by $ a^2 $ to get $ \dfrac{ 2a^2 }{ 3 } $. Step 1: Write $ a^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot a^2 & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{a^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot a^2 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2a^2 }{ 3 } \end{aligned} $$ |
| ⑥ | Multiply $ \dfrac{a}{3} $ by $ x $ to get $ \dfrac{ ax }{ 3 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{a}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{a}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ a \cdot x }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ ax }{ 3 } \end{aligned} $$ |
| ⑦ | Multiply $ \dfrac{1}{2} $ by $ x^2 $ to get $ \dfrac{ x^2 }{ 2 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 }{ 2 } \end{aligned} $$ |
| ⑧ | Multiply $ \dfrac{3}{2} $ by $ a^2 $ to get $ \dfrac{ 3a^2 }{ 2 } $. Step 1: Write $ a^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{2} \cdot a^2 & \xlongequal{\text{Step 1}} \frac{3}{2} \cdot \frac{a^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot a^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3a^2 }{ 2 } \end{aligned} $$ |
| ⑨ | Subtract $ax$ from $ \dfrac{3x^2}{2} $ to get $ \dfrac{ \color{purple}{ -2ax+3x^2 } }{ 2 }$. Step 1: Write $ ax $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑩ | Multiply $ \dfrac{2}{3} $ by $ a^2 $ to get $ \dfrac{ 2a^2 }{ 3 } $. Step 1: Write $ a^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot a^2 & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{a^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot a^2 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2a^2 }{ 3 } \end{aligned} $$ |
| ⑪ | Subtract $ \dfrac{x^2}{2} $ from $ \dfrac{ax}{3} $ to get $ \dfrac{ \color{purple}{ 2ax-3x^2 } }{ 6 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑫ | Multiply $ \dfrac{3}{2} $ by $ a^2 $ to get $ \dfrac{ 3a^2 }{ 2 } $. Step 1: Write $ a^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{2} \cdot a^2 & \xlongequal{\text{Step 1}} \frac{3}{2} \cdot \frac{a^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot a^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3a^2 }{ 2 } \end{aligned} $$ |
| ⑬ | Add $ \dfrac{-2ax+3x^2}{2} $ and $ \dfrac{2a^2}{3} $ to get $ \dfrac{ \color{purple}{ 4a^2-6ax+9x^2 } }{ 6 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑭ | Add $ \dfrac{2ax-3x^2}{6} $ and $ \dfrac{3a^2}{2} $ to get $ \dfrac{ \color{purple}{ 9a^2+2ax-3x^2 } }{ 6 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑮ | Add $ \dfrac{-2ax+3x^2}{2} $ and $ \dfrac{2a^2}{3} $ to get $ \dfrac{ \color{purple}{ 4a^2-6ax+9x^2 } }{ 6 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑯ | Multiply $ \dfrac{9a^2+2ax-3x^2}{6} $ by $ \dfrac{4a^2-6ax+9x^2}{6} $ to get $ \dfrac{36a^4-46a^3x+57a^2x^2+36ax^3-27x^4}{36} $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{9a^2+2ax-3x^2}{6} \cdot \frac{4a^2-6ax+9x^2}{6} & \xlongequal{\text{Step 1}} \frac{ \left( 9a^2+2ax-3x^2 \right) \cdot \left( 4a^2-6ax+9x^2 \right) }{ 6 \cdot 6 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 36a^4-54a^3x+81a^2x^2+8a^3x-12a^2x^2+18ax^3-12a^2x^2+18ax^3-27x^4 }{ 36 } = \frac{36a^4-46a^3x+57a^2x^2+36ax^3-27x^4}{36} \end{aligned} $$ |