Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{3}(2x-5)-\frac{3}{4}(x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x-5}{3}-\frac{3x-6}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-x-2}{12}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{3} $ by $ 2x-5 $ to get $ \dfrac{ 2x-5 }{ 3 } $. Step 1: Write $ 2x-5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot 2x-5 & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{2x-5}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( 2x-5 \right) }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x-5 }{ 3 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{3}{4} $ by $ x-2 $ to get $ \dfrac{ 3x-6 }{ 4 } $. Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot \left( x-2 \right) }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x-6 }{ 4 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{3x-6}{4} $ from $ \dfrac{2x-5}{3} $ to get $ \dfrac{ \color{purple}{ -x-2 } }{ 12 }$. To subtract raitonal expressions, both fractions must have the same denominator. |