Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{2}x^2+\frac{2}{3}x-\frac{5}{3}-(\frac{3}{8}x^2-\frac{3}{4}x+\frac{7}{3})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{x^2}{2}+\frac{2x}{3}-\frac{5}{3}-(\frac{3x^2}{8}-\frac{3x}{4}+\frac{7}{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{3x^2+4x}{6}-\frac{5}{3}-(\frac{3x^2-6x}{8}+\frac{7}{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{3x^2+4x-10}{6}-\frac{9x^2-18x+56}{24} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{3x^2+34x-96}{24}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{2} $ by $ x^2 $ to get $ \dfrac{ x^2 }{ 2 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 }{ 2 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{2}{3} $ by $ x $ to get $ \dfrac{ 2x }{ 3 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot x }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 2x }{ 3 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{3}{8} $ by $ x^2 $ to get $ \dfrac{ 3x^2 }{ 8 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{8} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{3}{8} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x^2 }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x^2 }{ 8 } \end{aligned} $$ |
| ④ | Multiply $ \dfrac{3}{4} $ by $ x $ to get $ \dfrac{ 3x }{ 4 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot x & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3x }{ 4 } \end{aligned} $$ |
| ⑤ | Add $ \dfrac{x^2}{2} $ and $ \dfrac{2x}{3} $ to get $ \dfrac{ \color{purple}{ 3x^2+4x } }{ 6 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Subtract $ \dfrac{3x}{4} $ from $ \dfrac{3x^2}{8} $ to get $ \dfrac{ \color{purple}{ 3x^2-6x } }{ 8 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Subtract $ \dfrac{5}{3} $ from $ \dfrac{3x^2+4x}{6} $ to get $ \dfrac{ \color{purple}{ 3x^2+4x-10 } }{ 6 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑧ | Add $ \dfrac{3x^2-6x}{8} $ and $ \dfrac{7}{3} $ to get $ \dfrac{ \color{purple}{ 9x^2-18x+56 } }{ 24 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑨ | Subtract $ \dfrac{9x^2-18x+56}{24} $ from $ \dfrac{3x^2+4x-10}{6} $ to get $ \dfrac{ \color{purple}{ 3x^2+34x-96 } }{ 24 }$. To subtract raitonal expressions, both fractions must have the same denominator. |