Tap the blue circles to see an explanation.
| $$ \begin{aligned}(\frac{1}{2}x^2-3)(4y^3+5x^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(\frac{x^2}{2}-3)(4y^3+5x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^2-6}{2}(4y^3+5x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4x^2y^3+5x^4-24y^3-30x^2}{2}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{2} $ by $ x^2 $ to get $ \dfrac{ x^2 }{ 2 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 }{ 2 } \end{aligned} $$ |
| ② | Subtract $3$ from $ \dfrac{x^2}{2} $ to get $ \dfrac{ \color{purple}{ x^2-6 } }{ 2 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Multiply $ \dfrac{x^2-6}{2} $ by $ 4y^3+5x^2 $ to get $ \dfrac{ 4x^2y^3+5x^4-24y^3-30x^2 }{ 2 } $. Step 1: Write $ 4y^3+5x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2-6}{2} \cdot 4y^3+5x^2 & \xlongequal{\text{Step 1}} \frac{x^2-6}{2} \cdot \frac{4y^3+5x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x^2-6 \right) \cdot \left( 4y^3+5x^2 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4x^2y^3+5x^4-24y^3-30x^2 }{ 2 } \end{aligned} $$ |