Tap the blue circles to see an explanation.
| $$ \begin{aligned}(\frac{1}{20}x+\frac{19}{100})(x^3+9x^2+x+1)+(1-x(x+5)-\frac{19}{100}(x+5))(x^2+4x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(\frac{1}{20}x+\frac{19}{100})(x^3+9x^2+x+1)+(1-(x^2+5x)-\frac{19}{100}(x+5))(x^2+4x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(\frac{1}{20}x+\frac{19}{100})(x^3+9x^2+x+1)+(1-x^2-5x-\frac{19}{100}(x+5))(x^2+4x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(\frac{x}{20}+\frac{19}{100})(x^3+9x^2+x+1)+(1-x^2-5x-\frac{19x+95}{100})(x^2+4x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{5x+19}{100}(x^3+9x^2+x+1)+\frac{-100x^2-519x+5}{100}(x^2+4x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{5x^4+64x^3+176x^2+24x+19}{100}+\frac{-100x^4-919x^3-2171x^2-499x+5}{100} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{-95x^4-855x^3-1995x^2-475x+24}{100}\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{x} $ by $ \left( x+5\right) $ $$ \color{blue}{x} \cdot \left( x+5\right) = x^2+5x $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^2+5x \right) = -x^2-5x $$ |
| ③ | Multiply $ \dfrac{1}{20} $ by $ x $ to get $ \dfrac{ x }{ 20 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{20} \cdot x & \xlongequal{\text{Step 1}} \frac{1}{20} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x }{ 20 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x }{ 20 } \end{aligned} $$ |
| ④ | Multiply $ \dfrac{19}{100} $ by $ x+5 $ to get $ \dfrac{ 19x+95 }{ 100 } $. Step 1: Write $ x+5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{19}{100} \cdot x+5 & \xlongequal{\text{Step 1}} \frac{19}{100} \cdot \frac{x+5}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 19 \cdot \left( x+5 \right) }{ 100 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 19x+95 }{ 100 } \end{aligned} $$ |
| ⑤ | Add $ \dfrac{x}{20} $ and $ \dfrac{19}{100} $ to get $ \dfrac{ \color{purple}{ 5x+19 } }{ 100 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Subtract $ \dfrac{19x+95}{100} $ from $ 1-x^2-5x $ to get $ \dfrac{ \color{purple}{ -100x^2-519x+5 } }{ 100 }$. Step 1: Write $ 1-x^2-5x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Multiply $ \dfrac{5x+19}{100} $ by $ x^3+9x^2+x+1 $ to get $ \dfrac{5x^4+64x^3+176x^2+24x+19}{100} $. Step 1: Write $ x^3+9x^2+x+1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5x+19}{100} \cdot x^3+9x^2+x+1 & \xlongequal{\text{Step 1}} \frac{5x+19}{100} \cdot \frac{x^3+9x^2+x+1}{\color{red}{1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 5x+19 \right) \cdot \left( x^3+9x^2+x+1 \right) }{ 100 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 5x^4+45x^3+5x^2+5x+19x^3+171x^2+19x+19 }{ 100 } = \\[1ex] &= \frac{5x^4+64x^3+176x^2+24x+19}{100} \end{aligned} $$ |
| ⑧ | Multiply $ \dfrac{-100x^2-519x+5}{100} $ by $ x^2+4x+1 $ to get $ \dfrac{-100x^4-919x^3-2171x^2-499x+5}{100} $. Step 1: Write $ x^2+4x+1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-100x^2-519x+5}{100} \cdot x^2+4x+1 & \xlongequal{\text{Step 1}} \frac{-100x^2-519x+5}{100} \cdot \frac{x^2+4x+1}{\color{red}{1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( -100x^2-519x+5 \right) \cdot \left( x^2+4x+1 \right) }{ 100 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ -100x^4-400x^3-100x^2-519x^3-2076x^2-519x+5x^2+20x+5 }{ 100 } = \\[1ex] &= \frac{-100x^4-919x^3-2171x^2-499x+5}{100} \end{aligned} $$ |
| ⑨ | Add $ \dfrac{5x^4+64x^3+176x^2+24x+19}{100} $ and $ \dfrac{-100x^4-919x^3-2171x^2-499x+5}{100} $ to get $ \dfrac{-95x^4-855x^3-1995x^2-475x+24}{100} $. To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{5x^4+64x^3+176x^2+24x+19}{100} + \frac{-100x^4-919x^3-2171x^2-499x+5}{100} & = \frac{5x^4+64x^3+176x^2+24x+19}{\color{blue}{100}} + \frac{-100x^4-919x^3-2171x^2-499x+5}{\color{blue}{100}} = \\[1ex] &=\frac{ 5x^4+64x^3+176x^2+24x+19 + \left( -100x^4-919x^3-2171x^2-499x+5 \right) }{ \color{blue}{ 100 }} = \\[1ex] &= \frac{-95x^4-855x^3-1995x^2-475x+24}{100} \end{aligned} $$ |