Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{2}x^2-\frac{1}{4}y^2-xy+2x-0.55503& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^2}{2}-\frac{y^2}{4}-xy+2x-0.55503 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x^2-y^2}{4}-xy+2x-0.55503 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2x^2-4xy-y^2}{4}+2x-0.55503 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{2x^2-4xy-y^2+8x}{4}-0.55503 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{2x^2-4xy-y^2+8x}{4}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{2} $ by $ x^2 $ to get $ \dfrac{ x^2 }{ 2 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 }{ 2 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{1}{4} $ by $ y^2 $ to get $ \dfrac{ y^2 }{ 4 } $. Step 1: Write $ y^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot y^2 & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{y^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot y^2 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ y^2 }{ 4 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{y^2}{4} $ from $ \dfrac{x^2}{2} $ to get $ \dfrac{ \color{purple}{ 2x^2-y^2 } }{ 4 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Subtract $xy$ from $ \dfrac{2x^2-y^2}{4} $ to get $ \dfrac{ \color{purple}{ 2x^2-4xy-y^2 } }{ 4 }$. Step 1: Write $ xy $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Add $ \dfrac{2x^2-4xy-y^2}{4} $ and $ 2x $ to get $ \dfrac{ \color{purple}{ 2x^2-4xy-y^2+8x } }{ 4 }$. Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Subtract $0$ from $ \dfrac{2x^2-4xy-y^2+8x}{4} $ to get $ \dfrac{ \color{purple}{ 2x^2-4xy-y^2+8x } }{ 4 }$. Step 1: Write $ 0 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |