Tap the blue circles to see an explanation.
| $$ \begin{aligned}(0.205-x)\cdot(0.13-2x)\cdot(0.13-2x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(0+0x+0x+2x^2)\cdot(0.13-2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^2\cdot(0.13-2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}0x^2-4x^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-4x^3\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{0-x}\right) $ by each term in $ \left( 0-2x\right) $. $$ \left( \color{blue}{0-x}\right) \cdot \left( 0-2x\right) = 0 \cancel{0x} \cancel{0x}+2x^2 $$ |
| ② | Combine like terms: $$ 0 \, \color{blue}{ \cancel{0x}} \, \, \color{blue}{ \cancel{0x}} \,+2x^2 = 2x^2 $$ |
| ③ | Multiply $ \color{blue}{2x^2} $ by $ \left( 0-2x\right) $ $$ \color{blue}{2x^2} \cdot \left( 0-2x\right) = 0x^2-4x^3 $$ |
| ④ | Combine like terms: $$ -4x^3 = -4x^3 $$ |