Tap the blue circles to see an explanation.
| $$ \begin{aligned}(0.1-x)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}0+0x+x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2\end{aligned} $$ | |
| ① | Find $ \left(0-x\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 0 } $ and $ B = \color{red}{ x }$. $$ \begin{aligned}\left(0-x\right)^2 = \color{blue}{0^2} -2 \cdot 0 \cdot x + \color{red}{x^2} = 00x+x^2\end{aligned} $$ |
| ② | Combine like terms: $$ x^2 = x^2 $$ |