Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-x+5)(x^4+x^3+4x^2-2x-12)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-x^5+4x^4+x^3+22x^2+2x-60\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-x+5}\right) $ by each term in $ \left( x^4+x^3+4x^2-2x-12\right) $. $$ \left( \color{blue}{-x+5}\right) \cdot \left( x^4+x^3+4x^2-2x-12\right) = -x^5-x^4-4x^3+2x^2+12x+5x^4+5x^3+20x^2-10x-60 $$ |
| ② | Combine like terms: $$ -x^5 \color{blue}{-x^4} \color{red}{-4x^3} + \color{green}{2x^2} + \color{orange}{12x} + \color{blue}{5x^4} + \color{red}{5x^3} + \color{green}{20x^2} \color{orange}{-10x} -60 = \\ = -x^5+ \color{blue}{4x^4} + \color{red}{x^3} + \color{green}{22x^2} + \color{orange}{2x} -60 $$ |