Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-x-10)(x^2-2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-x^3+2x^2-x-10x^2+20x-10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-x^3-8x^2+19x-10\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-x-10}\right) $ by each term in $ \left( x^2-2x+1\right) $. $$ \left( \color{blue}{-x-10}\right) \cdot \left( x^2-2x+1\right) = -x^3+2x^2-x-10x^2+20x-10 $$ |
| ② | Combine like terms: $$ -x^3+ \color{blue}{2x^2} \color{red}{-x} \color{blue}{-10x^2} + \color{red}{20x} -10 = -x^3 \color{blue}{-8x^2} + \color{red}{19x} -10 $$ |