Tap the blue circles to see an explanation.
| $$ \begin{aligned}-x^2-3x+4-(x^2+2x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-x^2-3x+4-x^2-2x-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2x^2-5x-1\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^2+2x+5 \right) = -x^2-2x-5 $$ |
| ② | Combine like terms: $$ \color{blue}{-x^2} \color{red}{-3x} + \color{green}{4} \color{blue}{-x^2} \color{red}{-2x} \color{green}{-5} = \color{blue}{-2x^2} \color{red}{-5x} \color{green}{-1} $$ |